A self-paced motor imagery based brain-computer interface for robotic wheelchair control.

نویسندگان

  • Chun Sing Louis Tsui
  • John Q Gan
  • Huosheng Hu
چکیده

This paper presents a simple self-paced motor imagery based brain-computer interface (BCI) to control a robotic wheelchair. An innovative control protocol is proposed to enable a 2-class self-paced BCI for wheelchair control, in which the user makes path planning and fully controls the wheelchair except for the automatic obstacle avoidance based on a laser range finder when necessary. In order for the users to train their motor imagery control online safely and easily, simulated robot navigation in a specially designed environment was developed. This allowed the users to practice motor imagery control with the core self-paced BCI system in a simulated scenario before controlling the wheelchair. The self-paced BCI can then be applied to control a real robotic wheelchair using a protocol similar to that controlling the simulated robot. Our emphasis is on allowing more potential users to use the BCI controlled wheelchair with minimal training; a simple 2-class self paced system is adequate with the novel control protocol, resulting in a better transition from offline training to online control. Experimental results have demonstrated the usefulness of the online practice under the simulated scenario, and the effectiveness of the proposed self-paced BCI for robotic wheelchair control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Study of Various Feature Extraction Methods on a Motor Imagery Based Brain Computer Interface System

Introduction: Brain Computer Interface (BCI) systems based on Movement Imagination (MI) are widely used in recent decades. Separate feature extraction methods are employed in the MI data sets and classified in Virtual Reality (VR) environments for real-time applications. Methods: This study applied wide variety of features on the recorded data using Linear Discriminant Analysis (LDA) classifie...

متن کامل

A hybrid NIRS-EEG system for self-paced brain computer interface with online motor imagery.

BACKGROUND For a self-paced motor imagery based brain-computer interface (BCI), the system should be able to recognize the occurrence of a motor imagery, as well as the type of the motor imagery. However, because of the difficulty of detecting the occurrence of a motor imagery, general motor imagery based BCI studies have been focusing on the cued motor imagery paradigm. NEW METHOD In this pa...

متن کامل

Control of a 2-DoF robotic arm using a P300-based brain-computer interface

In this study, a novel control algorithm, based on a P300-based brain-computer interface (BCI) is fully developed to control a 2-DoF robotic arm. Eight subjects including 5 men and 3 women perform a 2-dimensional target tracking in a simulated environment. Their EEG (Electroencephalography) signals from visual cortex are recorded and P300 components are extracted and evaluated to perform a real...

متن کامل

The Self-Paced Graz Brain-Computer Interface: Methods and Applications

We present the self-paced 3-class Graz brain-computer interface (BCI) which is based on the detection of sensorimotor electroencephalogram (EEG) rhythms induced by motor imagery. Self-paced operation means that the BCI is able to determine whether the ongoing brain activity is intended as control signal (intentional control) or not (non-control state). The presented system is able to automatica...

متن کامل

EEG-based interaction with virtual worlds: A self-paced three class Brain-Computer Interface

In this paper, we present self-paced Brain-Computer Interface (BCI) based interaction with a computer game. The BCI is able to detect three different motor imagery related brain patterns (imagination of left hand, right hand, foot or tongue movements) in the ongoing brain activity by using three bipolar electroencephalogram (EEG) channels only. To ensure that brain activity was used for control...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Clinical EEG and neuroscience

دوره 42 4  شماره 

صفحات  -

تاریخ انتشار 2011